
Clock Manager:
Revolutionizing Industrial Clock Synchronization
with Real-Time Monitoring

Presenter: Voon, Weifeng (weifeng.voon@intel.com)

Intel Corporation, Penang, Malaysia

Authors: Lai, Jun Ann (peter.jun.ann.lai@intel.com)

Song, Yoong Siang (yoong.siang.song@intel.com)

Ahmad Tarmizi, Noor Azura (noor.azura.ahmad.tarmizi@intel.com)

Voon, Weifeng (weifeng.voon@intel.com)

2

Agenda

❑ Introduction

❑ Software Architecture

❑ Functionality and Operational
Flow

❑ Test Results

❑ Conclusion and Future Work

Introduction

• Revolutionizes industrial automation, automotive systems, and real-time applications by
ensuring deterministic and reliable communication.

Time-Sensitive Networking
(TSN):

• Key to achieving high-precision time synchronization in TSN networks, surpassing Network
Time Protocol (NTP) and GPS in accuracy.

Precision Time Protocol
(PTP):

• Network load variations, hardware imperfections, and environmental factors can cause
synchronization errors, leading to data loss, increased latency, and system failures.Challenges in Time Sync:

• Out-of-sync devices can disrupt operations in industrial automation and automotive networks,
posing safety risks.Out-of-Sync Impact:

• Proprietary applications face challenges in accessing synchronization status due to non-
permissive licenses of time synchronization daemons.SW Licensing Issues:

• Introduces a time monitoring solution for real-time status updates from synchronization
daemons, enhancing functionality, security, and safety without exposing proprietary code.Clock Manager Solution:

3

Clock Manager

Overview:

• Open-source C++ tool for monitoring clock synchronization in industrial settings.

• Provides real-time synchronization status to subscribed user applications.

Architecture Components:

• Proxy Daemon:

• Interfaces with ptp4l and Chrony to obtain real-time clock sync status.

• Uses libptpmgmt for ptp4l and libchrony for Chrony via Unix Domain Sockets (UDS).

• Filters and extracts synchronization data, passing it to the client-runtime library via message queue IPC.

• Client-Runtime Library:

• Offers an API for user applications to connect and receive synchronization events.

• Stores real-time status and detects changes, triggering event notifications.

Benefits:

• Reduce complexity of handling clock sync status in a single proxy and free the TSN applications from that complexity.

• Proprietary-friendly solution for seamless integration.

4

High-Level Architectural Overview

5

Functionality and Operational Flow

• Interfaces with clock sync daemons to provide real-time telemetry data for user applications.

• Supports detection of synchronization errors.

Main Function:

• Execute ptp4l and Chrony, then run the proxy daemon.

• User applications connect to the proxy daemon via the CONNECT API, receiving a session
ID.

• Subscribe to events using the SUBSCRIBE API, specifying interest in event types.

• Monitor data changes with the WAIT API, which blocks until event changes occur or a
timeout elapses.

• Immediate notifications for out-of-sync events enable swift reactions to prevent machine
damage.

Operational Flow:

6

Functionality and Operational Flow

• offset_in_range: Indicates if the offset between Grandmaster (GM) and PHC is within
limits; provides latest clock offset.

• synced_to_primary_clock: Indicates GM identification and synchronization status.

• as_capable: Checks if the network link partner supports IEEE 802.1AS timing
requirements.

• gm_Changed: Indicates change in GM candidate with UUID information.

ptp4l Supported Events:

• clock_offset: Indicates if the offset between reference and system clock is within limits;
provides latest clock offset.

• clock_reference_id: Provides ID of the reference clock source.

• polling_interval: Indicates Chrony's synchronization period in nanoseconds.

Chrony Supported Events:

7

Result: Overview of Data Obtained

Provides a comprehensive view
of synchronization status and
event timing.

Enhances user applications'
ability to make informed
decisions based on the most
current data.

8

Result: GM Event Notification
Clock Synchronization Process:

• gm_Changed Event:

• Clock Manager notifies the sample application and provides the UUID of the new GM.

• Set to TRUE, indicating there is new GM.

• offset_in_range Event:

• When ptp4l starts synchronizing the PHC, the clock offset is initially large [> +-100].

• Set to FALSE, indicating clock offset is out-of-range.

• synced_to_primary_clock Event:

• ptp4l status changes from uncalibrated to time receiver (slave).

• Set to TRUE, indicating successful synchronization with the GM.

Significance:

• Highlights the role of Clock Manager in providing timely updates to applications, ensuring accurate time coordination

9

Result: Clock Offset Notification

Event Notification:

• offset_in_range Event:

• Triggered when the clock offset falls within the predefined range [-100, 100].

• Clock Manager immediately notifies the sample application that subscribed to this event.

• Transition from out-of-range to in-range.

Significance:

• Demonstrates the Clock Manager's ability to monitor and report changes in synchronization status.

• Ensures applications are informed of stable synchronization, enhancing system reliability and performance.

10

Result: Loss of GM Scenario
Test Overview:

• Simulated GM loss by terminating the GM, causing ptp4l to stop receiving periodic announce messages.

• Time synchronization halts on the local platform.

• Local PHC is temporarily assigned as the leader clock (master).

Clock Manager Response:

• Triggers the synced_to_primary_clock event to indicate the loss of GM

Significance:

• Demonstrates the Clock Manager's ability to detect and report changes in network synchronization status.

• Ensures users are informed of critical changes, allowing for appropriate responses to maintain network stability.

11

Result: Clock Jump Scenario

Experiment Overview:

• Simulated a loss of synchronization by advancing the GM clock to the year 2030, creating a significant time jump.

Clock Manager Response:

• Detected a substantial clock offset surge.

• Promptly alerted the user to the loss of synchronization, indicating the offset exceeded predefined limit

Performance Evaluation:

• Achieved a response time of approximately 7 milliseconds.

• Demonstrates the excellent responsiveness of the Clock Manager in detecting and reporting synchronization anomalies.

12

Conclusion and Future Work

• Introduced as an innovative solution for monitoring and reporting clock synchronization status in industrial
environments.

• Comprises a client-runtime library and a proxy daemon, enabling seamless integration with proprietary
applications.

• Utilizes a permissive BSD-3-Clause license to ensure security and compliance with licensing requirements.

Clock Manager:

• Communicates with time synchronization daemons like ptp4l and Chrony for real-time status updates.

• Notifies applications of synchronization events, such as GM status changes and clock offsets.

• Demonstrated rapid response time of approximately 7 milliseconds in detecting synchronization anomalies,
outperforming ptp4l's synchronization interval.

• Provides a secure and efficient solution for managing clock synchronization in complex environments.

Functionality and Benefits:

• Expand capabilities to support multiple PTP domains synchronization.

Future Work:

13

Thank You

	Slide 1: Clock Manager: Revolutionizing Industrial Clock Synchronization with Real-Time Monitoring
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Clock Manager
	Slide 5: High-Level Architectural Overview
	Slide 6: Functionality and Operational Flow
	Slide 7: Functionality and Operational Flow
	Slide 8: Result: Overview of Data Obtained
	Slide 9: Result: GM Event Notification
	Slide 10: Result: Clock Offset Notification
	Slide 11: Result: Loss of GM Scenario
	Slide 12: Result: Clock Jump Scenario
	Slide 13: Conclusion and Future Work
	Slide 14: Thank You

